Schur-convexity of the Catalan-Qi function related to the Catalan numbers

Feng Qi ${ }^{1}$, Xiao-Ting Shi ${ }^{2}$, Mansour Mahmoud ${ }^{3}$ and Fang-Fang Liu ${ }^{4}$

${ }^{1}$ Institute of Mathematics, Henan Polytechnic University, Jiaozuo City, Henan Province, 454010, China; College of Mathematics, Inner Mongolia University for Nationalities, Tongliao City, Inner Mongolia Autonomous Region, 028043, China; Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
${ }^{2}$ Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
${ }^{3}$ Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
${ }^{4}$ Department of Mathematics, College of Science, Tianjin Polytechnic University, Tianjin City, 300387, China
E-mail: qifeng618@gmail.com ${ }^{1}$, xiao-ting.shi@hotmail.com ${ }^{2}$, mansour@mans.edu.eg ${ }^{3}$, fang-liu@qq.com ${ }^{4}$

Abstract

In the paper, the authors present the Schur-convexity of the absolute of the logarithm of the Catalan-Qi function and prove the logarithmically complete monotonicity of the Catalan-Qi function.

2010 Mathematics Subject Classification. 11B83. 05A15, 11B75, 26A48, 26B25, 33B15, 44A10
Keywords. Schur-convexity; logarithmically complete monotonicity; Catalan-Qi function; Catalan number; majorization.

1 Introduction

It is common knowledge in combinatorics [4, 7] that the Catalan numbers C_{n} for $n \geq 0$ form a sequence of natural numbers that occur in tree enumeration problems such as "In how many ways can a regular n-gon be divided into $n-2$ triangles if different orientations are counted separately?" whose solution is the Catalan number C_{n-2}. The Catalan numbers C_{n} can be generated by

$$
\begin{aligned}
\frac{2}{1+\sqrt{1-4 x}}=\frac{1-\sqrt{1-4 x}}{2 x} & =\sum_{n=0}^{\infty} C_{n} x^{n} \\
& =1+x+2 x^{2}+5 x^{3}+14 x^{4}+42 x^{5}+132 x^{6}+429 x^{7}+1430 x^{8}+\cdots .
\end{aligned}
$$

One of explicit formulas of C_{n} for $n \geq 0$ reads that

$$
\begin{equation*}
C_{n}=\frac{4^{n} \Gamma(n+1 / 2)}{\sqrt{\pi} \Gamma(n+2)}, \tag{1.1}
\end{equation*}
$$

where

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t, \quad \Re(z)>0
$$

is the classical Euler gamma function.
In [28], among other things, a generalization of the expression (1.1) for the Catalan numbers C_{n} was given by

$$
\begin{equation*}
C(a, b ; z)=\frac{\Gamma(b)}{\Gamma(a)}\left(\frac{b}{a}\right)^{z} \frac{\Gamma(z+a)}{\Gamma(z+b)}, \quad \Re(a), \Re(b)>0, \quad \Re(z) \geq 0, \tag{1.2}
\end{equation*}
$$

due to $C\left(\frac{1}{2}, 2 ; n\right)=C_{n}$. For uniqueness and convenience of referring to the quantity $C(a, b ; x)$, we call the function $C(a, b ; x)$ the Catalan-Qi function. It is clear that

$$
\begin{equation*}
C(a, b ; 0)=C(a, b ; 1)=1 \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
C(a, b ; x)=\frac{1}{C(b, a ; x)} \tag{1.4}
\end{equation*}
$$

Currently we do not know and understand the combinatorial interpretation of $C(a, b ; x)$. Here we would not like to discuss its combinatorial interpretation.

Recently, in the papers $[8,13,19,20,24,26,27,28,33]$, the authors presented asymptotic expansions, integral representations, logarithmic convexity, complete monotonicity, minimality, logarithmically complete monotonicity, a generating function, and inequalities of the Catalan numbers C_{n}, the Catalan function C_{x}, the Catalan-Qi function $C(a, b ; x)$ in x, and related functions involving the ratios $\frac{\Gamma(x+a)}{\Gamma(x+b)}$ and $\frac{\Gamma(a)}{\Gamma(b)}$.

Let $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right) \in \mathbb{R}^{n}$ and $\mu=\left(\mu_{1}, \mu_{2}, \ldots, \mu_{n}\right) \in \mathbb{R}^{n}$. A sequence λ is said to be majorized by μ (in symbols $\lambda \preceq \mu$) if $\sum_{\ell=1}^{k} \lambda_{[\ell]} \leq \sum_{\ell=1}^{k} \mu_{[\ell]}$ for $k=1,2, \ldots, n-1$ and $\sum_{\ell=1}^{n} \lambda_{\ell}=$ $\sum_{\ell=1}^{n} \mu_{\ell}$, where $\lambda_{[1]} \geq \lambda_{[2]} \geq \cdots \geq \lambda_{[n]}$ and $\mu_{[1]} \geq \mu_{[2]} \geq \cdots \geq \mu_{[n]}$ are respectively the components of λ and μ in decreasing order. A sequence λ is said to be strictly majorized by μ (in symbols $\lambda \prec \mu)$ if λ is not a permutation of μ. For example,

$$
\begin{aligned}
(\underbrace{\frac{1}{n}, \ldots, \frac{1}{n}}_{n}) \prec(\underbrace{\frac{1}{n-1}, \ldots, \frac{1}{n-1}}_{n-1}, 0) & \prec(\underbrace{\frac{1}{n-2}, \ldots, \frac{1}{n-2}}_{n-2}, 0,0) \prec \cdots \\
& \prec\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}, 0, \ldots, 0\right) \prec\left(\frac{1}{2}, \frac{1}{2}, 0, \ldots, 0\right) \prec(1,0, \ldots, 0) .
\end{aligned}
$$

Recall from [10, p. 80] and [11, pp. 75-76] that, a function f with n arguments defined on I^{n} is called Schur-convex if $f(x) \leq f(y)$ for each two n-tuples $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ on I^{n} such that $x \prec y$ holds, where I is an interval with nonempty interior, and that a function f is Schur-concave if and only if $-f$ is Schur-convex.

Recall from [1, 17, 18] that an infinitely differentiable and positive function f is said to be logarithmically completely monotonic on an interval I if

$$
0 \leq(-1)^{k}[\ln f(x)]^{(k)}<\infty
$$

hold on I for all $k \in \mathbb{N}$. For more information on logarithmically completely monotonic functions, please refer to [2, 21, 22, 23, 30, 32].

In this paper, we investigate the Schur-convexity of the Catalan-Qi function $C(a, b ; x)$ in $(a, b) \in$ $(0, \infty) \times(0, \infty)$ for all $x \geq 0$ and study the logarithmically complete monotonicity of $C(a, b ; x)$ with respect to the variables $a>0$ and $b>0$ for all $x \geq 0$.

The main results of this paper are concluded in Theorems 1.1 and 1.2 below.
Theorem 1.1. For $a, b>0$ and $x \geq 0$, let

$$
\begin{equation*}
F_{x}(a, b)=|\ln C(a, b ; x)| \tag{1.5}
\end{equation*}
$$

Then the function $F_{x}(a, b)$ is Schur-convex in $(a, b) \in(0, \infty) \times(0, \infty)$ for all $x \geq 0$. In other words, if and only if $\left(a_{1}, b_{1}\right) \preceq\left(a_{2}, b_{2}\right)$, the inequality

$$
\left|\ln C\left(a_{1}, b_{1} ; x\right)\right| \leq\left|\ln C\left(a_{2}, b_{2} ; x\right)\right|
$$

is valid for all $x \geq 0$.
Theorem 1.2. Let $a, b>0$ and $x \geq 0$. Then the function $[C(a, b ; x)]^{ \pm 1}$ is logarithmically completely monotonic

1. with respect to $a>0$ if and only if $x \gtrless 1$,
2. with respect to $b>0$ if and only if $x \lessgtr 1$.

2 Lemmas

In order to prove Theorem 1.1, we need the following lemmas.
Lemma 2.1 ([24, Theorem 4.2]). Let $a, b>0$ and $x \geq 0$. Then

1. when $b>a$, the function $C(a, b ; x)$ is decreasing in $x \in\left[0, x_{0}\right)$, increasing in $x \in\left(x_{0}, \infty\right)$, and logarithmically convex in $x \in[0, \infty)$;
2. when $b<a$, the function $C(a, b ; x)$ is increasing in $x \in\left[0, x_{0}\right)$, decreasing in $x \in\left(x_{0}, \infty\right)$, and logarithmically concave in $x \in[0, \infty)$;
where x_{0} is the unique zero of the equation

$$
\frac{\psi(x+b)-\psi(x+a)}{\ln b-\ln a}=1
$$

and satisfies $x_{0} \in\left(0, \frac{1}{2}\right)$.
Lemma 2.2 ([10, p. 84], [11, p. 333, Theorem 12.25], and [31, p. 259, Theorem C]). Let $f(x)=$ $f\left(x_{1}, \ldots, x_{n}\right)$ be symmetric and have continuous partial derivatives on I^{n}, where I is an open interval. Then $f: I^{n} \rightarrow \mathbb{R}$ is Schur-convex if and only if

$$
\begin{equation*}
\left(x_{i}-x_{j}\right)\left[\frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{i}}-\frac{\partial f\left(x_{1}, \ldots, x_{n}\right)}{\partial x_{j}}\right] \geq 0, \quad 1 \leq i, j \leq n \tag{1.6}
\end{equation*}
$$

on I^{n}. The function f is strictly Schur-convex if the inequality (1.6) is strict for $x_{i} \neq x_{j}$.
Remark 2.1. By the way, the definition of the Schur-convexity and Lemma 2.2 were generalized and applied in $[3,12,25,34,35,37,38,39,41]$ and closely-related references therein.

3 Proofs of Theorems 1.1 and 1.2

We are now in a position to prove Theorems 1.1 and 1.2.
Proof of Theorem 1.1. From the identity in (1.4), we deduce that the function (1.5) is symmetric with respect to a and b. By virtue of Lemma 2.1 and the identity (1.3), we see that

1. for $b>a>0$,

$$
F_{x}(a, b)= \begin{cases}-\ln C(a, b ; x)=\ln C(b, a ; x), & x \in[0,1] \\ \ln C(a, b ; x)=-\ln C(b, a ; x), & x \in[1, \infty)\end{cases}
$$

2. for $a>b>0$,

$$
F_{x}(a, b)= \begin{cases}\ln C(a, b ; x)=-\ln C(b, a ; x), & x \in[0,1] \\ -\ln C(a, b ; x)=\ln C(b, a ; x), & x \in[1, \infty)\end{cases}
$$

When $x \in[0,1]$ and $b>a>0$, we have

$$
\begin{gather*}
\frac{\partial F_{x}(a, b)}{\partial a}=-\frac{\partial}{\partial a}\left\{\ln \left[\frac{\Gamma(b)}{\Gamma(a)}\left(\frac{b}{a}\right)^{x} \frac{\Gamma(x+a)}{\Gamma(x+b)}\right]\right\}=\psi(a)-\psi(x+a)+\frac{x}{a} \tag{1.7}\\
\frac{\partial F_{x}(a, b)}{\partial b}=-\frac{\partial}{\partial b}\left\{\ln \left[\frac{\Gamma(b)}{\Gamma(a)}\left(\frac{b}{a}\right)^{x} \frac{\Gamma(x+a)}{\Gamma(x+b)}\right]\right\}=\psi(x+b)-\psi(b)-\frac{x}{b} \\
\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}=[\psi(x+a)+\psi(x+b)]-[\psi(a)+\psi(b)]-x\left(\frac{1}{a}+\frac{1}{b}\right), \\
\frac{\partial}{\partial x}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=\psi^{\prime}(x+a)+\psi^{\prime}(x+b)-\left(\frac{1}{a}+\frac{1}{b}\right) \\
\frac{\partial^{2}}{\partial x^{2}}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=\psi^{\prime \prime}(x+a)+\psi^{\prime \prime}(x+b)<0 \tag{1.8}
\end{gather*}
$$

This means that the function

$$
\begin{equation*}
\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a} \tag{1.9}
\end{equation*}
$$

is concave and

$$
\begin{equation*}
\lim _{x \rightarrow 0^{+}}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=\lim _{x \rightarrow 1}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=0 \tag{1.10}
\end{equation*}
$$

where we used the well-known identity $\psi(x+1)=\psi(x)+\frac{1}{x}$ on $(0, \infty)$ in the last step. Consequently, it follows that

$$
\begin{equation*}
(b-a)\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right] \geq 0 \tag{1.11}
\end{equation*}
$$

for $b>a>0$ and $x \in[0,1]$.

When $x \in[0,1]$ and $a>b>0$, we have

$$
\begin{gather*}
\frac{\partial F_{x}(a, b)}{\partial a}=\frac{\partial}{\partial a}\left\{\ln \left[\frac{\Gamma(b)}{\Gamma(a)}\left(\frac{b}{a}\right)^{x} \frac{\Gamma(x+a)}{\Gamma(x+b)}\right]\right\}=\psi(x+a)-\psi(a)-\frac{x}{a}, \tag{1.12}\\
\frac{\partial F_{x}(a, b)}{\partial b}=\frac{\partial}{\partial b}\left\{\ln \left[\frac{\Gamma(b)}{\Gamma(a)}\left(\frac{b}{a}\right)^{x} \frac{\Gamma(x+a)}{\Gamma(x+b)}\right]\right\}=\psi(b)-\psi(x+b)+\frac{x}{b}, \\
\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}=[\psi(a)+\psi(b)]-[\psi(x+a)+\psi(x+b)]+x\left(\frac{1}{a}+\frac{1}{b}\right), \\
\frac{\partial}{\partial x}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=\left(\frac{1}{a}+\frac{1}{b}\right)-\left[\psi^{\prime}(x+a)+\psi^{\prime}(x+b)\right], \\
\frac{\partial^{2}}{\partial x^{2}}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=-\left[\psi^{\prime \prime}(x+a)+\psi^{\prime \prime}(x+b)\right]>0 . \tag{1.13}
\end{gather*}
$$

This means that the function (1.9) is convex and the limits in (1.10) are still valid. Consequently, the inequality (1.11) still holds for $a>b>0$ and $x \in[0,1]$.

When $x \in[1, \infty)$ and $b>a>0$, the equations between (1.12) and (1.13) are still valid. This means that the function (1.9) is convex. The second limit in (1.10) is still valid and

$$
\lim _{x \rightarrow \infty}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=\infty
$$

where we used the limit

$$
\frac{x}{a}-\psi(x+a)>\frac{x}{a}-\ln (x+a)+\frac{1}{2(x+a)} \rightarrow \infty, \quad a>0, \quad x \rightarrow \infty
$$

which is deduced from the right-hand side of the double inequality

$$
\ln x-\frac{1}{x}<\psi(x)<\ln x-\frac{1}{2 x}, \quad x>0
$$

collected in [5, p. 105, (1.5)]. An easy computation yields

$$
\lim _{x \rightarrow 1} \frac{\partial}{\partial x}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=\frac{1}{a}-\psi^{\prime}(a+1)+\frac{1}{b}-\psi^{\prime}(b+1)>0
$$

where we used in the last step the inequality $\psi^{\prime}(x+1)<\frac{1}{x}$ on $(0, \infty)$, which is a special case of $[6$, Theorem 3, (13)] and [14, p. 55, (5.17)] for $\beta=1$ therein. Therefore, the function (1.9) is increasing on $[1, \infty)$, then the inequality (1.11) is valid for $b>a>0$ and $x \in[1, \infty)$.

When $x \in[1, \infty)$ and $a>b>0$, the equations between (1.7) and (1.8) are still valid. This means that the function (1.9) is concave. The second limit in (1.10) is still valid and

$$
\lim _{x \rightarrow \infty}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=-\infty
$$

An easy computation yields

$$
\lim _{x \rightarrow 1} \frac{\partial}{\partial x}\left[\frac{\partial F_{x}(a, b)}{\partial b}-\frac{\partial F_{x}(a, b)}{\partial a}\right]=\psi^{\prime}(a+1)-\frac{1}{a}+\psi^{\prime}(b+1)-\frac{1}{b}<0
$$

Therefore, the function (1.9) is decreasing on $[1, \infty$), then the inequality (1.11) is valid for $a>b>0$ and $x \in[1, \infty)$.

In a word, by Lemma 2.2, we conclude that the function $F_{x}(a, b)$ for all $x \geq 0$ is Schur-convex in $(a, b) \in(0, \infty) \times(0, \infty)$. The proof of Theorem 1.1 is complete.
Q.E.D.

Proof of Theorem 1.2. Taking the logarithm of $C(a, b ; x)$, differentiating with respect to a, and applying the integral representation

$$
\psi(z)=\int_{0}^{\infty}\left(\frac{e^{-t}}{t}-\frac{e^{-z t}}{1-e^{-t}}\right) \mathrm{d} t, \quad \Re(z)>0
$$

arrive at

$$
\begin{aligned}
\frac{\partial[\ln C(a, b ; x)]}{\partial a} & =\frac{\partial}{\partial a} \ln \left[\frac{\Gamma(b)}{\Gamma(a)}\left(\frac{b}{a}\right)^{x} \frac{\Gamma(x+a)}{\Gamma(x+b)}\right] \\
& =\psi(x+a)-\psi(a)-\frac{x}{a} \\
& =\int_{0}^{\infty}\left(\frac{1-e^{-x t}}{1-e^{-t}}-x\right) e^{-a t} \mathrm{~d} t \\
& =x \int_{0}^{\infty}\left(\frac{1-e^{-x t}}{x t}-\frac{1-e^{-t}}{t}\right) \frac{t e^{-a t}}{1-e^{-t}} \mathrm{~d} t
\end{aligned}
$$

Since the function $\frac{1-e^{-t}}{t}$ is strictly decreasing on $(0, \infty)$, then

$$
\frac{1-e^{-x t}}{x t}-\frac{1-e^{-t}}{t} \gtrless 0
$$

if and only if $x \lessgtr 1$. The Bernstein-Widder theorem, [36, p. 161, Theorem 12b], states that a necessary and sufficient condition for $f(x)$ to be completely monotonic on $(0, \infty)$ is that

$$
\begin{equation*}
f(x)=\int_{0}^{\infty} e^{-x t} \mathrm{~d} \mu(t) \tag{1.14}
\end{equation*}
$$

where μ is a positive measure on $[0, \infty)$ such that the integral (1.14) converges on $(0, \infty)$. Consequently, the function $[C(a, b ; x)]^{ \pm 1}$ is logarithmically completely monotonic with respect to $a>0$ if and only if $x \gtrless 1$.

By virtue of (1.2), we obtain immediately that the function $[C(a, b ; x)]^{ \pm 1}$ is logarithmically completely monotonic with respect to $b>0$ if and only if $x \lessgtr 1$. The proof of Theorem 1.2 is complete.
Q.E.D.

Remark 3.1. How about the Schur-harmonic convexity, Schur-geometric convexity, and Schur-mpower convexity of the Catalan-Qi function $C(a, b ; x)$ in $(a, b) \in(0, \infty) \times(0, \infty)$ for all $x \geq 0$? For information on the Schur-harmonic convexity, Schur-geometric convexity, Schur-m-power convexity, and the like, please refer to $[3,35,37,38,39,40,41]$ and closely-related references therein.
Remark 3.2. This paper is a companion of the articles $[8,9,13,15,16,19,24,26,27,28,33]$ and a slightly revised version of the preprint [29].

References

[1] R. D. Atanassov and U. V. Tsoukrovski, Some properties of a class of logarithmically completely monotonic functions, C. R. Acad. Bulgare Sci. 41 (1988), no. 2, 21-23.
[2] C. Berg, Integral representation of some functions related to the gamma function, Mediterr. J. Math. 1 (2004), no. 4, 433-439; Available online at http://dx.doi.org/10.1007/s00009-004-0022-6.
[3] Y.-M. Chu, X.-M. Zhang, and G.-D. Wang, The Schur geometrical convexity of the extended mean values, J. Convex Anal. 15 (2008), no. 4, 707-718.
[4] R. L. Graham, D. E. Knuth, and O. Patashnik, Concrete Mathematics - A Foundation for Computer Science, 2nd ed., Addison-Wesley Publishing Company, Reading, MA, 1994.
[5] B.-N. Guo, F. Qi, J.-L. Zhao, and Q.-M. Luo, Sharp inequalities for polygamma functions, Math. Slovaca 65 (2015), no. 1, 103-120; Available online at http://dx.doi.org/10.1515/ms-2015-0010.
[6] S. Guo, F. Qi, and H. M. Srivastava, A class of logarithmically completely monotonic functions related to the gamma function with applications, Integral Transforms Spec. Funct. 23 (2012), no. 8, 557-566; Available online at http://dx.doi.org/10.1080/10652469.2011.611331.
[7] T. Koshy, Catalan Numbers with Applications, Oxford University Press, Oxford, 2009.
[8] F.-F. Liu, X.-T. Shi, and F. Qi, A logarithmically completely monotonic function involving the gamma function and originating from the Catalan numbers and function, Glob. J. Math. Anal. 3 (2015), no. 4, 140-144; Available online at http://dx.doi.org/10.14419/gjma.v3i4.5187.
[9] M. Mahmoud and F. Qi, Three identities of the Catalan-Qi numbers, Mathematics 4 (2016), no. 2, Article 35, 7 pages; Available online at http://dx.doi.org/10.3390/math4020035.
[10] A. W. Marshall, I. Olkin, and B. C. Arnold, Inequalities: Theory of Majorization and its Applications, 2nd Ed., Springer Verlag, New York-Dordrecht-Heidelberg-London, 2011; Available online at http://dx.doi.org/10.1007/978-0-387-68276-1.
[11] J. E. Pečarić, F. Proschan, and Y. L. Tong, Convex Functions, Partial Orderings, and Statistical Applications, Mathematics in Science and Engineering 187, Academic Press, 1992.
[12] F. Qi, A note on Schur-convexity of extended mean values, Rocky Mountain J. Math. 35 (2005), no. 5, 1787-1793; Available online at http://dx.doi.org/10.1216/rmjm/1181069663.
[13] F. Qi, Asymptotic expansions, complete monotonicity, and inequalities of the Catalan numbers, ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/RG.2.1.4371.6321.
[14] F. Qi, Bounds for the ratio of two gamma functions, J. Inequal. Appl. 2010 (2010), Article ID 493058, 84 pages; Available online at http://dx.doi.org/10.1155/2010/493058.
[15] F. Qi, Some properties and generalizations of the Catalan, Fuss, and Fuss-Catalan numbers, ResearchGate Research (2015), available online at http://dx.doi.org/10.13140/RG.2.1.1778.3128.
[16] F. Qi, Two product representations and several properties of the Fuss-Catalan numbers, ResearchGate Research (2015), available online at http://dx.doi.org/10.13140/RG.2.1.1655.6004.
[17] F. Qi and C.-P. Chen, A complete monotonicity property of the gamma function, J. Math. Anal. Appl. 296 (2004), 603-607; Available online at http://dx.doi.org/10.1016/j.jmaa.2004.04.026.
[18] F. Qi and B.-N. Guo, Complete monotonicities of functions involving the gamma and digamma functions, RGMIA Res. Rep. Coll. 7 (2004), no. 1, Art. 8, 63-72; Available online at http://rgmia.org/v7n1.php.
[19] F. Qi and B.-N. Guo, Logarithmically complete monotonicity of a function related to the Catalan-Qi function, Acta Univ. Sapientiae Math. 8 (2016), no. 1, 93-102; Available online at http://dx.doi.org/10.1515/ausm-2016-0006.
[20] F. Qi and B.-N. Guo, Logarithmically complete monotonicity of Catalan-Qi function related to Catalan numbers, Cogent Math. (2016), 3:1179379, 6 pages; Available online at http://dx.doi.org/10.1080/23311835.2016.1179379.
[21] F. Qi, S. Guo, and B.-N. Guo, Complete monotonicity of some functions involving polygamma functions, J. Comput. Appl. Math. 233 (2010), no. 9, 2149-2160; Available online at http://dx.doi.org/10.1016/j.cam.2009.09.044.
[22] F. Qi and W.-H. Li, A logarithmically completely monotonic function involving the ratio of gamma functions, J. Appl. Anal. Comput. 5 (2015), no. 4, 626-634; Available online at http://dx.doi.org/10.11948/2015049.
[23] F. Qi, Q.-M. Luo, and B.-N. Guo, Complete monotonicity of a function involving the divided difference of digamma functions, Sci. China Math. 56 (2013), no. 11, 2315-2325; Available online at http://dx.doi.org/10.1007/s11425-012-4562-0.
[24] F. Qi, M. Mahmoud, X.-T. Shi, and F.-F. Liu, Some properties of the Catalan-Qi function related to the Catalan numbers, SpringerPlus (2016), 5:1126, 20 pages; Available online at http://dx.doi.org/10.1186/s40064-016-2793-1.
[25] F. Qi, J. Sándor, S. S. Dragomir, and A. Sofo, Notes on the Schur-convexity of the extended mean values, Taiwanese J. Math. 9 (2005), no. 3, 411-420.
[26] F. Qi, X.-T. Shi, and F.-F. Liu, An integral representation, complete monotonicity, and inequalities of the Catalan numbers, ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/RG.2.1.3754.4806.
[27] F. Qi, X.-T. Shi, F.-F. Liu, and D. V. Kruchinin, Several formulas for special values of the Bell polynomials of the second kind and applications, J. Appl. Anal. Comput. (2017), in press; ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/RG.2.1.3230.1927.
[28] F. Qi, X.-T. Shi, M. Mahmoud, and F.-F. Liu, The Catalan numbers: a generalization, an exponential representation, and some properties, J. Comput. Anal. Appl. 23 (2017), no. 5, 937-944.
[29] F. Qi, X.-T. Shi, M. Mahmoud, and F.-F. Liu, Schur-convexity of the Catalan-Qi function related to the Catalan numbers, ResearchGate Technical Report (2015), available online at http://dx.doi.org/10.13140/RG.2.1.2434.4802.
[30] F. Qi, C.-F. Wei, and B.-N. Guo, Complete monotonicity of a function involving the ratio of gamma functions and applications, Banach J. Math. Anal. 6 (2012), no. 1, 35-44; Available online at http://dx.doi.org/10.15352/bjma/1337014663.
[31] A. W. Roberts and D. E. Varberg, Convex Functions, Pure and Applied Mathematics 57, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1973.
[32] R. L. Schilling, R. Song, and Z. Vondraček, Bernstein Functions-Theory and Applications, 2nd ed., de Gruyter Studies in Mathematics 37, Walter de Gruyter, Berlin, Germany, 2012; Available online at http://dx.doi.org/10.1515/9783110269338.
[33] X.-T. Shi, F.-F. Liu, and F. Qi, An integral representation of the Catalan numbers, Glob. J. Math. Anal. 3 (2015), no. 3, 130-133; Available online at http://dx.doi.org/10.14419/gjma.v3i3.5055.
[34] H.-N. Shi, S.-H. Wu, and F. Qi, An alternative note on the Schur-convexity of the extended mean values, Math. Inequal. Appl. 9 (2006), no. 2, 219-224; Available online at http://dx.doi.org/10.7153/mia-09-22.
[35] J. Sun, Z.-L. Sun, B.-Y. Xi, and F. Qi, Schur-geometric and Schur-harmonic convexity of an integral mean for convex functions, Turkish J. Anal. Number Theory 3 (2015), no. 3, 87-89; Available online at http://dx.doi.org/10.12691/tjant-3-3-4.
[36] D. V. Widder, The Laplace Transform, Princeton Mathematical Series 6, Princeton University Press, Princeton, N. J., 1941.
[37] Y. Wu and F. Qi, Schur-harmonic convexity for differences of some means, Analysis (Munich) 32 (2012), no. 4, 263-270; Available online at http://dx.doi.org/10.1524/anly.2012.1171.
[38] Y. Wu, F. Qi, and H.-N. Shi, Schur-harmonic convexity for differences of some special means in two variables, J. Math. Inequal. 8 (2014), no. 2, 321-330; Available online at http://dx.doi.org/10.7153/jmi-08-23.
[39] W.-F. Xia and Y.-M. Chu, Schur-convexity for a class of symmetric functions and its applications, J. Inequal. Appl. 2009 (2009), Article ID 493759, 15 pages; Avalible online at http://dx.doi.org/10.1155/2009/493759.
[40] Z.-H. Yang, Schur power convexity of Stolarsky means, Publ. Math. Debrecen 80 (2012), no. 12, 43-66; Available online at http://dx.doi.org/10.5486/PMD.2012.4812.
[41] H.-P. Yin, H.-N. Shi, and F. Qi, On Schur m-power convexity for ratios of some means, J. Math. Inequal. 9 (2015), no. 1, 145-153; Available online at http://dx.doi.org/10.7153/jmi-09-14.

