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Abstract

In the paper, the authors present the Schur-convexity of the absolute of the logarithm of the
Catalan–Qi function and prove the logarithmically complete monotonicity of the Catalan–Qi
function.
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1 Introduction

It is common knowledge in combinatorics [4, 7] that the Catalan numbers Cn for n ≥ 0 form a
sequence of natural numbers that occur in tree enumeration problems such as “In how many ways
can a regular n-gon be divided into n−2 triangles if different orientations are counted separately?”
whose solution is the Catalan number Cn−2. The Catalan numbers Cn can be generated by

2

1 +
√

1− 4x
=

1−
√

1− 4x

2x
=
∞∑

n=0

Cnx
n

= 1 + x+ 2x2 + 5x3 + 14x4 + 42x5 + 132x6 + 429x7 + 1430x8 + · · · .

One of explicit formulas of Cn for n ≥ 0 reads that

Cn =
4nΓ(n+ 1/2)√
π Γ(n+ 2)

, (1.1)

where

Γ(z) =

∫ ∞
0

tz−1e−t d t, <(z) > 0

is the classical Euler gamma function.
In [28], among other things, a generalization of the expression (1.1) for the Catalan numbers

Cn was given by

C(a, b; z) =
Γ(b)

Γ(a)

(
b

a

)z
Γ(z + a)

Γ(z + b)
, <(a),<(b) > 0, <(z) ≥ 0, (1.2)
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due to C
(

1
2 , 2;n

)
= Cn. For uniqueness and convenience of referring to the quantity C(a, b;x), we

call the function C(a, b;x) the Catalan–Qi function. It is clear that

C(a, b; 0) = C(a, b; 1) = 1 (1.3)

and

C(a, b;x) =
1

C(b, a;x)
. (1.4)

Currently we do not know and understand the combinatorial interpretation of C(a, b;x). Here we
would not like to discuss its combinatorial interpretation.

Recently, in the papers [8, 13, 19, 20, 24, 26, 27, 28, 33], the authors presented asymptotic expan-
sions, integral representations, logarithmic convexity, complete monotonicity, minimality, logarith-
mically complete monotonicity, a generating function, and inequalities of the Catalan numbers Cn,
the Catalan function Cx, the Catalan–Qi function C(a, b;x) in x, and related functions involving

the ratios Γ(x+a)
Γ(x+b) and Γ(a)

Γ(b) .

Let λ = (λ1, λ2, . . . , λn) ∈ Rn and µ = (µ1, µ2, . . . , µn) ∈ Rn. A sequence λ is said to be

majorized by µ (in symbols λ � µ) if
∑k

`=1 λ[`] ≤
∑k

`=1 µ[`] for k = 1, 2, . . . , n− 1 and
∑n

`=1 λ` =∑n
`=1 µ`, where λ[1] ≥ λ[2] ≥ · · · ≥ λ[n] and µ[1] ≥ µ[2] ≥ · · · ≥ µ[n] are respectively the components

of λ and µ in decreasing order. A sequence λ is said to be strictly majorized by µ (in symbols
λ ≺ µ) if λ is not a permutation of µ. For example,(
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(

1

n− 2
, . . . ,

1

n− 2︸ ︷︷ ︸
n−2

, 0, 0

)
≺ · · ·

≺
(

1

3
,

1

3
,

1

3
, 0, . . . , 0

)
≺
(

1

2
,

1

2
, 0, . . . , 0

)
≺ (1, 0, . . . , 0).

Recall from [10, p. 80] and [11, pp. 75–76] that, a function f with n arguments defined on In is
called Schur-convex if f(x) ≤ f(y) for each two n-tuples x = (x1, . . . , xn) and y = (y1, . . . , yn) on
In such that x ≺ y holds, where I is an interval with nonempty interior, and that a function f is
Schur-concave if and only if −f is Schur-convex.

Recall from [1, 17, 18] that an infinitely differentiable and positive function f is said to be
logarithmically completely monotonic on an interval I if

0 ≤ (−1)k[ln f(x)](k) <∞

hold on I for all k ∈ N. For more information on logarithmically completely monotonic functions,
please refer to [2, 21, 22, 23, 30, 32].

In this paper, we investigate the Schur-convexity of the Catalan–Qi function C(a, b;x) in (a, b) ∈
(0,∞)× (0,∞) for all x ≥ 0 and study the logarithmically complete monotonicity of C(a, b;x) with
respect to the variables a > 0 and b > 0 for all x ≥ 0.

The main results of this paper are concluded in Theorems 1.1 and 1.2 below.

Theorem 1.1. For a, b > 0 and x ≥ 0, let

Fx(a, b) = | lnC(a, b;x)|. (1.5)
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Then the function Fx(a, b) is Schur-convex in (a, b) ∈ (0,∞)× (0,∞) for all x ≥ 0. In other words,
if and only if (a1, b1) � (a2, b2), the inequality

| lnC(a1, b1;x)| ≤ | lnC(a2, b2;x)|

is valid for all x ≥ 0.

Theorem 1.2. Let a, b > 0 and x ≥ 0. Then the function [C(a, b;x)]±1 is logarithmically completely
monotonic

1. with respect to a > 0 if and only if x ≷ 1,

2. with respect to b > 0 if and only if x ≶ 1.

2 Lemmas

In order to prove Theorem 1.1, we need the following lemmas.

Lemma 2.1 ([24, Theorem 4.2]). Let a, b > 0 and x ≥ 0. Then

1. when b > a, the function C(a, b;x) is decreasing in x ∈ [0, x0), increasing in x ∈ (x0,∞), and
logarithmically convex in x ∈ [0,∞);

2. when b < a, the function C(a, b;x) is increasing in x ∈ [0, x0), decreasing in x ∈ (x0,∞), and
logarithmically concave in x ∈ [0,∞);

where x0 is the unique zero of the equation

ψ(x+ b)− ψ(x+ a)

ln b− ln a
= 1

and satisfies x0 ∈
(
0, 1

2

)
.

Lemma 2.2 ([10, p. 84], [11, p. 333, Theorem 12.25], and [31, p. 259, Theorem C]). Let f(x) =
f(x1, . . . , xn) be symmetric and have continuous partial derivatives on In, where I is an open
interval. Then f : In → R is Schur-convex if and only if

(xi − xj)
[
∂f(x1, . . . , xn)

∂xi
− ∂f(x1, . . . , xn)

∂xj

]
≥ 0, 1 ≤ i, j ≤ n (1.6)

on In. The function f is strictly Schur-convex if the inequality (1.6) is strict for xi 6= xj.

Remark 2.1. By the way, the definition of the Schur-convexity and Lemma 2.2 were generalized
and applied in [3, 12, 25, 34, 35, 37, 38, 39, 41] and closely-related references therein.

3 Proofs of Theorems 1.1 and 1.2

We are now in a position to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. From the identity in (1.4), we deduce that the function (1.5) is symmetric
with respect to a and b. By virtue of Lemma 2.1 and the identity (1.3), we see that
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1. for b > a > 0,

Fx(a, b) =

{
− lnC(a, b;x) = lnC(b, a;x), x ∈ [0, 1],

lnC(a, b;x) = − lnC(b, a;x), x ∈ [1,∞);

2. for a > b > 0,

Fx(a, b) =

{
lnC(a, b;x) = − lnC(b, a;x), x ∈ [0, 1],

− lnC(a, b;x) = lnC(b, a;x), x ∈ [1,∞).

When x ∈ [0, 1] and b > a > 0, we have

∂Fx(a, b)

∂a
= − ∂

∂a

{
ln

[
Γ(b)

Γ(a)

(
b

a

)x
Γ(x+ a)

Γ(x+ b)

]}
= ψ(a)− ψ(x+ a) +

x

a
, (1.7)

∂Fx(a, b)

∂b
= − ∂

∂b

{
ln

[
Γ(b)

Γ(a)

(
b

a

)x
Γ(x+ a)

Γ(x+ b)

]}
= ψ(x+ b)− ψ(b)− x

b
,

∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a
= [ψ(x+ a) + ψ(x+ b)]− [ψ(a) + ψ(b)]− x

(
1

a
+

1

b

)
,

∂

∂x

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
= ψ′(x+ a) + ψ′(x+ b)−

(
1

a
+

1

b

)
,

∂2

∂x2

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
= ψ′′(x+ a) + ψ′′(x+ b) < 0. (1.8)

This means that the function
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a
(1.9)

is concave and

lim
x→0+

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
= lim

x→1

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
= 0, (1.10)

where we used the well-known identity ψ(x+1) = ψ(x)+ 1
x on (0,∞) in the last step. Consequently,

it follows that

(b− a)

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
≥ 0 (1.11)

for b > a > 0 and x ∈ [0, 1].
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When x ∈ [0, 1] and a > b > 0, we have

∂Fx(a, b)

∂a
=

∂

∂a

{
ln

[
Γ(b)

Γ(a)

(
b

a

)x
Γ(x+ a)

Γ(x+ b)

]}
= ψ(x+ a)− ψ(a)− x

a
, (1.12)

∂Fx(a, b)

∂b
=

∂

∂b

{
ln

[
Γ(b)

Γ(a)

(
b

a

)x
Γ(x+ a)

Γ(x+ b)

]}
= ψ(b)− ψ(x+ b) +

x

b
,

∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a
= [ψ(a) + ψ(b)]− [ψ(x+ a) + ψ(x+ b)] + x

(
1

a
+

1

b

)
,

∂

∂x

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
=

(
1

a
+

1

b

)
− [ψ′(x+ a) + ψ′(x+ b)],

∂2

∂x2

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
= −[ψ′′(x+ a) + ψ′′(x+ b)] > 0. (1.13)

This means that the function (1.9) is convex and the limits in (1.10) are still valid. Consequently,
the inequality (1.11) still holds for a > b > 0 and x ∈ [0, 1].

When x ∈ [1,∞) and b > a > 0, the equations between (1.12) and (1.13) are still valid. This
means that the function (1.9) is convex. The second limit in (1.10) is still valid and

lim
x→∞

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
=∞,

where we used the limit

x

a
− ψ(x+ a) >

x

a
− ln(x+ a) +

1

2(x+ a)
→∞, a > 0, x→∞,

which is deduced from the right-hand side of the double inequality

lnx− 1

x
< ψ(x) < lnx− 1

2x
, x > 0

collected in [5, p. 105, (1.5)]. An easy computation yields

lim
x→1

∂

∂x

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
=

1

a
− ψ′(a+ 1) +

1

b
− ψ′(b+ 1) > 0,

where we used in the last step the inequality ψ′(x+ 1) < 1
x on (0,∞), which is a special case of [6,

Theorem 3, (13)] and [14, p. 55, (5.17)] for β = 1 therein. Therefore, the function (1.9) is increasing
on [1,∞), then the inequality (1.11) is valid for b > a > 0 and x ∈ [1,∞).

When x ∈ [1,∞) and a > b > 0, the equations between (1.7) and (1.8) are still valid. This
means that the function (1.9) is concave. The second limit in (1.10) is still valid and

lim
x→∞

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
= −∞.

An easy computation yields

lim
x→1

∂

∂x

[
∂Fx(a, b)

∂b
− ∂Fx(a, b)

∂a

]
= ψ′(a+ 1)− 1

a
+ ψ′(b+ 1)− 1

b
< 0.
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Therefore, the function (1.9) is decreasing on [1,∞), then the inequality (1.11) is valid for a > b > 0
and x ∈ [1,∞).

In a word, by Lemma 2.2, we conclude that the function Fx(a, b) for all x ≥ 0 is Schur-convex
in (a, b) ∈ (0,∞)× (0,∞). The proof of Theorem 1.1 is complete. q.e.d.

Proof of Theorem 1.2. Taking the logarithm of C(a, b;x), differentiating with respect to a, and
applying the integral representation

ψ(z) =

∫ ∞
0

(
e−t

t
− e−zt

1− e−t

)
d t, <(z) > 0

arrive at

∂[lnC(a, b;x)]

∂a
=

∂

∂a
ln

[
Γ(b)

Γ(a)

(
b

a

)x
Γ(x+ a)

Γ(x+ b)

]
= ψ(x+ a)− ψ(a)− x

a

=

∫ ∞
0

(
1− e−xt

1− e−t
− x
)
e−at d t

= x

∫ ∞
0

(
1− e−xt

xt
− 1− e−t

t

)
te−at

1− e−t
d t.

Since the function 1−e−t

t is strictly decreasing on (0,∞), then

1− e−xt

xt
− 1− e−t

t
≷ 0

if and only if x ≶ 1. The Bernstein-Widder theorem, [36, p. 161, Theorem 12b], states that a
necessary and sufficient condition for f(x) to be completely monotonic on (0,∞) is that

f(x) =

∫ ∞
0

e−xt dµ(t), (1.14)

where µ is a positive measure on [0,∞) such that the integral (1.14) converges on (0,∞). Conse-
quently, the function [C(a, b;x)]±1 is logarithmically completely monotonic with respect to a > 0
if and only if x ≷ 1.

By virtue of (1.2), we obtain immediately that the function [C(a, b;x)]±1 is logarithmically
completely monotonic with respect to b > 0 if and only if x ≶ 1. The proof of Theorem 1.2 is
complete. q.e.d.

Remark 3.1. How about the Schur-harmonic convexity, Schur-geometric convexity, and Schur-m-
power convexity of the Catalan–Qi function C(a, b;x) in (a, b) ∈ (0,∞)× (0,∞) for all x ≥ 0? For
information on the Schur-harmonic convexity, Schur-geometric convexity, Schur-m-power convexity,
and the like, please refer to [3, 35, 37, 38, 39, 40, 41] and closely-related references therein.

Remark 3.2. This paper is a companion of the articles [8, 9, 13, 15, 16, 19, 24, 26, 27, 28, 33] and
a slightly revised version of the preprint [29].
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